Isogenies of Oriented Elliptic Curves

Doron L Grossman-Naples (he/she/they)
University of lllinois, Urbana-Champaign

August 23rd, 2025

1/12



https://doronlgn.github.io/TalkNotes/Isogenies.pdf

Some Preliminary Notes

Conventions/Terminology

@ Stack = étale sheaf of co-groupoids on CAlgp

@ DM-stack (algebraic space) = spectral Deligne-Mumford
stack (spectral algebraic space), not necessarily connective

@ Formal DM-stack = formal filtered colimit of DM-stacks
along closed immersions; called “honest” if actual DM-stack.
Formal algebraic spaces defined similarly

@ Isogeny = strict abelian variety map which is finite, flat, and
locally almost of finite presentation
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stack (spectral algebraic space), not necessarily connective

@ Formal DM-stack = formal filtered colimit of DM-stacks
along closed immersions; called “honest” if actual DM-stack.
Formal algebraic spaces defined similarly

@ Isogeny = strict abelian variety map which is finite, flat, and
locally almost of finite presentation

Xuecai Ma and Yifei Zhu have a paper in the works ([MZ25])
which approaches this from a different perspective, defining level
structures in terms of classical divisors. It isn't clear whether this is
mezzmequivalent to my definition. A draft can be found on Professor
ZnéEm/ hu's website. 2/12
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lét +— {Congruence subgroups I' C GLs(Z)}
Men

M(T") ="moduli stack of elliptic curves with I'-structure” (i.e.
isogeny with prescribed kernel)

Over Z

M(T") and the reduction map exist in the category of algebraic
stacks, but

e M(T') may not be Deligne-Mumford (e.g. My(N))

@ The reduction map is never étale (unless we invert the level)

Ere3ES0o we can't use the usual methods to lift to spectral AG.
ZefESolution: Work with moduli interpretation directly! 3/12
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The Moduli of Isogenies

Definition
The moduli stack of isogenies over R is the functor
Isog : CAlgp — S given by

E,E ¢ M2ﬁ<A>,}

A {z’:E—>E’ -
i isogeny.

(The isogenies are not required to preserve the orientation.)

Then MY (T") can be built from Isog.

Main Theorem (GN)
Isog is a formal DM-stack.

Warning
It is not known whether Isog is an honest DM-stack.
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Connected-Etale Factorization

Factorization Theorem (GN)

or

There is an orthogonal factorization system (%onn, &) on Ellfe

such that
@ “onn is the class of connected isogenies, and
o &t is the class of étale isogenies.

This factorization system is natural with respect to change of base.
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There is an orthogonal factorization system (%'onn, &) on El Tsog

such that
@ “onn is the class of connected isogenies, and
o &t is the class of étale isogenies.

This factorization system is natural with respect to change of base.

K® =——K° —— 0

I

K E : E’

! o]
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Digression: Why are the components isogenies?

Elliptic Rigidity Theorem, classical version ([KM85])

Zariski-locally on the base, every morphism of classical elliptic
curves is either 0 or an isogeny.
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Zariski-locally on the base, every morphism of strict elliptic curves
is either 0 or an isogeny.

Proof sketch.
Main idea: 0 map deforms uniquely through square-zero extensions
=-through Postnikov tower.

Deff(f) —— Def4(B)
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Digression: Why are the components isogenies?

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves
is either 0 or an isogeny.

Proof sketch.

Main idea: 0 map deforms uniquely through square-zero extensions
=-through Postnikov tower.

= :A\ Def£( f)J—> Def(B)
|1 | l
R—— AT B x* ——— Deff(B)

f factors through R = R is retract of A
= B ®4a Ly/R vanishes

= DetB(f)=0. O 6/12



https://doronlgn.github.io/TalkNotes/Isogenies.pdf

Connected-Etale Factorization

Corollary

We have a pullback of functors

Isog — Isog®

| |

t
Isog®™ —— Mgy.

7/12



https://doronlgn.github.io/TalkNotes/Isogenies.pdf

Connected-Etale Factorization

Corollary

We have a pullback of functors

Isog — Isog®

| |

t
Isog®™ —— Mgy.

conn

Just need to show that Isog®, Isog are formal DM-stacks.
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ldentifying Isog®

Theorem (GN)

Isog® is a DM-stack.

Proof sketch.
Q [KMS85]: {(E, K) | E elliptic curve, K C E finite} — (M%)"
relative scheme.

@ {(E,K) | E elliptic curve, K C E finite étale} open substack.

© Leverage étaleness and use ([Lurl8c], Theorem 18.1.0.2) to
lift from classical to spectral. O
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Theorem (GN)

Isog®™ is a formal DM-stack.
Proof sketch.
{E conn E/}
!
{K C FE closed, proper, connected AND equiv E/K ~ G%}
!

{K C @g honest subgroup AND equiv @g/K ~ @g}

= Isog®™ ~ Mgy x Quillsog

9/12



https://doronlgn.github.io/TalkNotes/Isogenies.pdf

.Conn

|dentifying Isog

Theorem (GN)

conn

Isog is a formal DM-stack.

Proof sketch (ctd).

Quillsog

!

Sub™(G%)
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Isog is a formal DM-stack.

Proof sketch (ctd).

OrDat g/K) —— Quillsog
J
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— K sub"(GY)
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:

[Lurl8b]: OrDat(@g/K) is an affine DM-stack.
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Theorem (GN)

conn

Isog is a formal DM-stack.

Proof sketch (ctd).

OrDat g/K) —— Quillsog
J

o

— K sub"(GY)

@
*
[Lurl8b]: OrDat(@g/K) is an affine DM-stack.

= Enough to show that Subh(Gg) is formal DM-stack.
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Thank you!
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